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Introduction: Bivariate (and multivariate) asymptotic distributions of extremes

are useful for dealing with many concrete problems as the largest ages of death

for men and women, whose distribution naturally splits in Ohe product of the mar-

gins, by independence; the floods (or droughts) at two different places of the

same river, each year; bivariate (or multivariate) extreme meteorological data

(pressure , temperature, wind velocity, etc.) each week; largest waves each week,

etc.

Evidently, the target of a study of asymptotic distributions of bivariate

extremes is to obtain asymptotic probabilistic behavior and also, to provide bi-

variate models of (asymptotic) extremes that fit observed data. It can be said

that, although some problems are solved, the methods found until now cover much

less area than the theory for extremes, which itself may be said to be in ado-

lescence but not, yet, in adult age. Thus bivariate extremes may be, now, at the

end of infancy and multivariate extremes are yet even younger! It will be seen

that, in many cases, we do not have the best test, the best estimation procedure,

etc. - although we have one - and in other cases nothing at all is known. An

example: the separation of the bivariate extreme models - so important for appli-

cations - is only now being considered! In general, the few papers up to now

choose one model from the beginning or compare two of them by the use of

Kolmogoroff-Smirnov or another test, see, for instance, Gumbel and Goldstein

(1964).

Let us briefly recall the basic ideas relating to univariate extremes. Let

{Xn I be a sequence of i.i.d. random variables with distribution function F(x).

Then Prob{max (X1 .... Xn) 5 x1 = F n(x). We can ask whether there exist sequences

of attraction coefficients {( ,6 n)} (6n > 0) such that

max(Xl ... Xn) - n n x = Fn(Xn+ x
6 n_Prob{ 6 n

n

' .. ... .... . .. -.. ' t-o"" . . . . . " '. . . I , ! , , ,
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has a non-degenerate (weak) limiting distribution function L(x). It is well

known that, by Khintchine's theorem on convergence of types, that if this happens

the sequence L( n6) is not unique and an equivalent sequence, (TT ), i.e.

leading to the same limiting distribution L(x) is such that ( n- n)/6 n 0 and
n n

I n/n - 1. With a convenient choice of {(A n, l we have the reduced (or stan-

dardl forns

e-(-z) if .. < z 0

1 if 0 5 z < -- ; O > 0

~(z) =exp(-e Z) , z -i<-z and

(z) 0 if - < z < 0

_-ci

e if 0 < z < > 0.

The basic paper is Gnedenko (1943), with previous ones of Fisher-Tippett (1928),

Fr~chet (1927), Gumbel (1935) and cnMises (1935). For more details see Gumbel

(1958).

S, and are called, respectively, Weibull, Gumbel and Fiechet (standard)

distributions; in practical applications we have to introduce location and disper-

sion parameters.

It is evident that by logarithmic transformations we can reduce Weibull and

Frechet fo ms to the Gumbel one, so that, for theoretical study - although not

for practical applications - we can concentrate on the Gumbel limiting form, as

will be done in the next sections.

Note that as max(x,, ... ) -min(-xl,..., -xn) the analogous limiting

forms for minima are I - L(-z), i.e., 1 - P (-z), 1 - A(-z) and I - ' (-z).

Let us recall, as it will be useful in the sequel, that for the Gumbel dis-

tribution A(z) the mean value of I = y = 0.57722 (Euler constant), the variance
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2 2/6 3
2= = 2 /6, the skewness coefficient P3/0 = 1.1396 and the kurtosis

coefficient a4/4 = 5.4.

Asymptotic behavior of bivariate maxima: Consider now a sequence of i.i.d. ran-

dom pairs {(Xn,'n)j with distribution function F(x,y). Analogously

Prob{max(xl,..., xn) < x, max(y1 ,..., Y y = Fn(x,y). We can seek a pair

of sequences {( n, n),(A',6')} such that

max(x1,..., x n)- n  max(y I , .... Yn)-X'l <Y
nn n nProb{ - x , y} = Fn(X n n n y

ii n

do have a (weak) limiting non-degenerate distribution function L(xy). If this

happens the Boole-Frechet inequality shows that the margins also have (weak)

limiting distributions of the marginal maxima and, thus, are of the three forms

previously given. In relation to what has been said before, we wilt, from now

on, suppose that the limiting disthlbutions of the margins are of Gumbel form:

L(xl*-) = A(x) , L(+y) = A(y)

Using Khintchine's theorem, as is done for the univariate case and imposing

'- el margins we can show that L(x,y) must satisfy the (stability) relation

L k(x,y) = L(x-lo& k,y-log k)

for an integer k positive. Passing from the positive integer k to rational

r(-,O) and finally to real t(>O) we get

t
L (x,y) = L(x-log t,y-log t)

e-x

Taking now x = log t we have L(x,y) = L (O,y-x). Putting now L(Ow) =

exp(-(I+e-W )k(w)) we have shown, finally, that the limiting (and stable) distri-

bution of maxima with Gumbel margins are of the form

L(x,y) = A(x,y) = exp(-(e-X+e-Y)k(y-x)) = {A(x)A(y)} k(y-x)
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It remains to study now the dependence function k(w), obviously continuous

and non-negative, for A to be a distrjiutlon function. Those results are well

known. They can be found, with different forms of margins in Finkelshteyn

(1953), Tiago de Oliveira (1958), Geffroy (1958/59) and Sibuya (1959) with a

synthesis of the results in Tiago de Oliveira (1962/63). Subsequent results

are in Tiago de Oliveira (1975) and (1980). Galambos (1968) contains a more

recent account.

A characterization of the distribution function \(x,y) can Le made in the

following way. it is immediate that a random pair (X,j) with distribution

function A(x,y) is such that V = max(X+a,Y+b) has a Gumbel distribution functior

with a location parameter, i.e., max(X+a,Y+b) - {log(e a+e ) + log k(a-b) has a

standard Gumbel distribution function. In fact

Probfmax(X+a,Y+b)-!,(a,b)z! = F(z+A(a,b)-a,z+A(a,b)-b) = _ (z)

or

F(z-a,z-b) - A(z-X(a,b))

If we put z-a = p, z-b = q we get

F(p,q) = A(z-X(z-p,z-q))

and, thus, z - \(z-p,z-q) is independent of z. Taking now z = q and

X(q-p,O) = log(l+e q -p ) + log k(q-p) we obtain the desired form.

Let us now describe the dependence function k(w). Although a continuous

function we cannot show that it has a 2nd derivative and consequently we cannot

expect a bivariate extreme random pair with distribution function A(x,y) =

[. x),(y)]k(y -x) to have a planar density. In fact, from the Boole-Fr6chet

inequality

max (0,A(x)+A(y)-l) : A(x,y) _ min(A(x),!A(y))

we have, replacing x and y by x + log n and y + log n, raising to the power n and



letting n - , the limit inequality

A(x)A(y) A(x,y) - min(A(x),A(y))

or

exp{-(e-X+e-Y)} : A(x,y) s exp(-e - min(x'y))

Evidently the upper limit corresponds to the case where the reduced margins pair

(X,Y) is concentrated, with probability 1, in the first diagonal, the so-called

diagonal case, which is singular; the lower limit corresponds to independence.

For the dependence function we have

.,ma~l~-w)

(diagonal)max(le < k(w) 5 1 (independence).
1 + e

Note that k(--) = k(+-) = 1. The behavior of the dependence function can be

described through the behavior of the median line A(x,y) = or

(e-X+e-Y)k(y-x) = log 2; note that the median curve is always in the plane area

defined by the curve for the diagonal case max(e-,e -y) log 2 and the curve

for independence e-X.e -y = log 2.

If there is a planar density, i.e., k"(w) exists, then as it is easily ob-

tained by derivation, k(w) must satisfy the relations:

k(-) = k(+-) = 1 ,

[(l+ew)k(w)] ' 0

[(l+e-W)k(w)] '  0

and

(l+e-W)k"(w) + (l-e W)k'(w) 0

2
the corresponding conditions for the general case being, as Ay A(x,y) 0 0,

k(--) = k(+-) = 1 ,

(l+ew)k(w) a non-decreasing function

(l+e-W)k(w) a non-increasing function
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and A2  (e-k +e-Yk(y-x)] < 0

Some other properties can be ascribed to k(w). The first one is the symmetry

condition, i.e., if k(w) is a dependence function, then k(-w) is also a dependence

function. The proof is immediate if we consider the conditions in the differenti-

able case (where a planar density does exist) and slightly longer in the general

case. If k(w) = k(-w) then (X,Y) is an exchangeable pair and A(x,y) = P.(y,x).

Also it is immediate that if k (w) and k2(w ) are dependence functions, any

mixture k1 (w) + (1-0) k1 (w), 0 < 0 _ 1, is also a dependence function . The set

of dependence functions is, then, convex. And this convexity property
1-0(

!(x,y) = A (xy) •A2  (x,y)

is very useful in obtaining models: the mixed model as well as the Gumbel model,

are such examples.

Another method of generating models is the following. Let (X,Y) be an

extreme random pair, with dependence function k(w) and standard Gumbel margins

and consider the new random pair (X,Y) with X = max(X+a,y+b), y = max(X+c,y+d).

To have standard Gumbel margins we must have (e a+e b)k(a-b) = I and

e c+e d)k(c-d) = 1. Then we have

(w) e [emax(a+w,c) emax(b+wd) jk[max(a+w,c) - max(b+w,d)]

1 + eW

with (a,b) and (c,d) satisfying the conditions written above. This max-technique

will be used towards the end of the paper to generate the biextremal and natural

models.

Let us stress that independence has a very important position on a limiting

situation. If we denote by P(a,b) the function defined by Prob{X>x,Y>y} =

P(F(x,+-), F(+-,y)) Sibuya (1960) has shown that the necessary and sufficient

*W'
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condition for having limiting independence is that P(I-s,l-s)/s-) 0 as s 0.

He also showed that the necessary and sufficient condition for having the diagonal

case as a limit situation is that P(l-s,l-s)/s - 1 as s - 0. With the first re-

sult we can show, easily, that the maxima of the binormal distribution has inde-

pendence as a limiting distribution if P < 1.

Also Geffroy (1958/59) showed that a sufficient condition for limiting inde-

pendence is that

1 + F(x,y) - F(x,wy) - F(w xY)

1 - F(x,y) x y

w and w being the right end points of the support of X and Y.x y

Sibuya conditions (and Geffroy sufficient conditions) are easy to interpret:

we have limiting independence if Prob{X>x,Y>y} is a vanishing summand of

Prob{X>xorY>y} and the diagonal case as limit if Prob{X>x,Y>y} is the leading

summand of Prob{X>x or Y>y}.

It is known that a random pair (X,Y) with distribution function F(x,y) has

positive association if

Prob{X5x,Y!y} + {Prob X>x,Y>y}

is larger than or equal to the corresponding probabilities in the case of indepen-

dence; intuitively this means that large (small) values of one of the variables

are associated with large (small) values of the other. It is immediate that this

reduces to

F(x,y) F(x,+-)F(+-,y).

The inequality, obtained from Boole-Frechet inequality,

A(x)A(y) ! A(x,y) ! min(A(x),A(y))

shows that this is the case for bivariate extreme pairs, as could be anticipated.

This result is due to Sibuya (1960).
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The results on correlation that follow and some regression results to be given

later continue to illuminate the situation.

As the covariance between X and Y can be written, as it is well known

cov(X,Y) = f_.f+m [F(x,y) - F(x,+-o)F(+o,y)] dxdy

we have in our case

cov(X,Y) = -f,' j logk(w) dw

and the correlation coefficient

S= - f- logkA(w) dw

As k(w) -< 1 we have 0 - p, as could be expected from the positive association

It is very easy to show that for the diagonal case

kw M =max(l,ew)
kl+W e w

i e

we have p = 1. Evidently the value of p does not identify the dependence function

(or the distribution): p is the same for k(w) and k(-w). But p = 0, as k(w) I

implies k(w) = 1, or independence. Writing now p under the form

6 f+0 k(w)
I

we see, analogously, that = 1 or k(w) _> k1 implies k(w) = kM(w)1 . That is the

diagonal case.

Other common correlation coefficients are

grade-correlation coefficient X = 12f + m ew 2 dw-3_(I~eW)(l+k(w)) d-3

difference-sign cirrelation coefficient 1 = f D(w)(l-D(w)) dw

where

D(w) [lrob(Y-X!<w) = 1 +k(w)

1+0-w TTiWT

-..- -,a
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the inverse relation between D(w) and k(w) is

k~) exp(f_. D(t) dt)
k~w) =

1 + e W

Recall that k'(w) exists almost everywhere.

In the case of existence of a planar density, which means the existence of

D'(w), the conditions on k(w) are equivalent to the conditions that D(w) is a

distribution function with mean value zero

(f0. D(w) dw = f-- (-D(w)) dw)

and such that

D'(w) > D(w) (1-D(w))

Note that in the independence case (k(w) = 1) we have

D(w) = 1 (the logistic distribution)
1 +e

and D'(w) = D(w)(I-D(w))

The differentiable models; statistical decisions: In this section we will suppose

that the assumed models have standard Gumbel margins (or, equivalently, that the

location and dispersion margin parameters are known).

Up to now only two differentiable models - i.e., models with planar density,

with a point exception in one case - are known. They appear in Gumbel (1961).

One is the logistic model so called because its distribution function of the

reduced difference W = Y - X is

De(w) = (+e-W/(-6))-1

corresponding to the dependence function

k.(w ) (l+ e - 1 - 1 -

1+ e

I

- ~ -
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For 0 we have independence (k 0 (w) 1) and for I' 1 we have the diagonal

ka (w) = -w

1jw) 1 + e

which is the only case where we do not have a planar density.

A k (w) = k, (-w) the margins are exchangeable, as also can be shown by the

f,)r,. of the distribution function

.(x,y) exp -(e/(l
O) + e-Y/(l-" ))

I -

r,e correlation coefficient has the expression 0()= O(2-i) which increases from

(0) = o to N() = 1; Kendall's t has the expression r(e) = 9.

It can be shown that

0

0 2 -_1sup,.(Xy) 0 (x,y) = (l-2 - ) 2
x, y

which increases from 0 (at = ) to (at 0 = 1). It is, then, intuitive that

tht distance between the independence (6 = 0) and the assumed model for 0 > 0

is small in general, and for small samples it will probably be impossible to dis-

tinguish them. It is thus natural to use a one-sided test of 9 = o vs. C 0.

D)enoting by p,(x,y) the density ,2A0/ x dy (po(x,y) = A'(x),','(y)) it is well

known that the locally most powerful test of 0 = 0 vs. 0 > 0 is given by the

critical region

1 v(xi'yi) - an

where

v(x,y) = 4 logpo(x,y)Ie = 0

In our case we get

v(x,y) = -x-y+xe-x +ye-y+(e- X+e-Y-2)log(e-X+e-Y)+ 1
-x -ye +e



whose mean value is zero but has infinite variance at 0 = 0. Thus the usual cen-

tral limit theorem is not applicable and we have to resort to simulation.

A similar situation occurs for the mixed model whose dependence function is

the (1-0,0) mixture of the dependence func,,n k0(w) = I (independence) and
w w

kl(w) = 1 e 2for which kb(w) = I -0- e In this case we always
(l+e ) (l+e w)

have a planar density. The distribution function of the difference W = Y - X is
w w2
(l+e w) -o

D (w) lew 2-
a +ew (l+e w) -Oew

For fl = 0 we have independence, as noted, but for 0 = 1 we have dependence but

not the diagonal case. The Boole-Fr6chet inequality shows that the domain [0,1]

for 0 cannot be enlarged.

The distribution function is

A (x,y) = exp-{e-X+e-ye y  A(x)A(y)exp(e )
0e x+ey e x+ey

and the pair is exchangeable as can be seen, also, because k (w) = k (-w). The

correlation coefficient is
6

p(e) = -L(arc cos(I-e/2))Y
1T

increasing from p(O) = 0 to p(l) = 2/3. We have also

4

supiA (xy) - A0 (xY) -0
x,y

which increases from 0 (at 0 = 0) to 3 3/4 = 0.106. The smaller variation of the

correlation coefficient and of the distance shows that the deviation from indepen-

dence is smaller and most difficult to detect.

Once more, the locally most powerful test of 0= 0 vs. 0 > 0 leads to the

critical region

' v(xiryi) a a

n.4
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where 2x 2y 2x 2y
v(x,y) 22e e e e 1

(e +eY) (ex+eY) e +e

The mean value is zero but the variance is also infinite. Those difficulties

show that we must apply the usual methods of data analysis, although inefficient.

The combination of the use of correlation coefficients (product-moment,

difference-sign and grade) and also the step and quadrants method described

briefly in Tiago de Oliveira (1975, 1980) show that the most efficient of all is

the (product-moment) correlation coefficient, for testing = 0 vs. 0 in both

models. Naturally, until further advances appear, it seems natural to use corre-

lation coefficients to estimate 0. Note that all those methods are independent

of the margin patameters. For confidence intervals, owing to the difficulty of

getting the variance of p as a function of e (in both models) it may, even, be

useful to use the quadrants method which estimates the probability of the compo-

nents of the random pair to be both larger or both smaller than the medians of the

margins, by its observed frequency. As the margin medians, in reduced for-n, are

= -log log2, the probability already referred to has the expression 2...( . ,.)

which amounts to p(e) = exp(log2x(1-2 1-)) in the logistic model and to

p() = x2012 for the mixed model. 0 is estimated by p(O*) = N/n where N is the

number of observed pairs whose components are both smaller or both larger than

the sample margin medians and it is known that

¢ N/n-]?(O)

is asymptotically normal.

No other statistical decision problems (such as regression analysis, discrimi-

nation and forecasting) have been dealt with for both models; as said separation

of the two models is now under study.

H
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The non-differentiable models; statistical decisions: The biextremal and the

Gumbel models were the only ones considered until recently; now there is a third

model, the natural, which, in some way, generalizes the biextremal model (see

Tiago de Oliveira (1970, 1971, 1974, 1975, 1975', 1980)).

The biextremal model appears naturally in extremal processes (see Tiago de

Oliveira (1968) and references therein). One way of introducing it directly

through the max-technique is to consider a standard Gumbel independent pair

(X,Z) and take the new pair (X,Y) with

Y = max(X+log,Z+log(l-0)) , 0 _< 0 - 1.

It has the distribution function

A (x,y) = exp(-max(e +(I-6)e -y ,e-y ) }

and the dependence function

kw) = 1-+max(OeW) = 1 min(6,eW)

+ow e w 1+ew
1+ew l~eW

As k6(w) $ k0 (-w) the random variables are not exchangeable.

The distribution function of the (reduced) difference is D (w) 0 if w<logo

-w Iland D6(w) = (l+(1-0)e )- if w~log6 with a jump of 0 at logO. It is immediate

that

Prob{Y;XUlog6} = 1

and, so, a singular part is concentrated at the line y = x + loge, with proba-

bility 0. For e = 0 and 0 = I we obtain independence and the diagonal case. We

have 1+0

supl\ 0 (x,y0) - A (xy) = ((l+0) 
"

which, as for the logistic model, increases from 0 (at 0 = 0) to 1 (at e = 1).

As Prob{Y-XalogO}

and so Prob{min(y i-Xi)log8} = 1
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it is natural to estimate (; by

y. -x.i
i* = min(e 1

i 1,1)

whose distribution function is Prob{O*<z} = 0 if z < 0, = 1 - ( 1-6 )n if

e' <_ z < 1 = 1if z > 1, the variance of 0 being asymptotic to 2(1-)n /n2 if

" > 0 and asymptotic to 1/n2 if J = 0. A natural test of independence, at sig-

nificance level a, using 0* is to accept 0 = 0 vs. 6 > 0 if 6* < A-l/n-1. The

correlation coefficient of the biextremal model is

(6) = - 6 togt dt
2 .0 1-t
Tr

increasing from (0) = 0 to p(l) = 1.

In Tiago de Oliveira (1974) we gave the expression of the general regression

of Y in X and X on Y. It was shown already, in regard to mean square error, that

linear regression is a good approximation to the general regression. Although

linear regression and general regression curves behave very differently for very

large and very small values of x (or y), this can be explained because of the

positive association and of the fact that the half-lines where they are very

distinct have a very low probability and, thus, a very small weight in the mean

square error.

Gumbel model has the distribution function

Ao(x,y) = exp{-[e-X+e-Y-Omin(e-X,e-Y)]}

with the dependence function

k0(w) 1-0 min(leW)

1+ ew

and as k0 (w) = k6 (-w) the random variables X and Y are exchangeable. The

distribution function of the (reduced) difference is

1-0 ew

Dw if w < 0 - if w > 0
l-0+ew I-O+ew
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with a jump of 6/(2-0) at w = 0, giving thus the probability P(Y=X). The depen-

dence function is the mixture (1-6,e) of independence (k0 (w) = 1) and the diagonal

case (k (w) = max(leW) ). For this
1+ eW

supI A(x,y) - Ao(x,y) = -.7(e-8/2)2/0

x,y

which, also, increases from 0 (at 6 = 0) to (at 0 = 1).

This model is a transformation for Gumbel margins of the Marshall and Olkin

(1967) bivariate exponential model. If we denote by nfn the number of points-x. -Y.)

(xi.,Yi) with x. = Yi and by Tn = i/n~max(e 1 ,e 1) the maximum likelihood esti-

mator, it is then given by

A 2
S= (T n-l+ T -1) 4f T )/2Tn

taking 6 = 0 if the expression is negative. 6*, not truncated, is asymptotically

normal with mean value 6 and variance

0(1-6) (2-6)

n(1+6)

Note that f and T are asymptotically independent and that
n n

(2-6)f -8

(r 7 n ) , , ((2-0/Tn-1))/26(l-6)

is asymptotically a binormal pair with standard margins. In particular we see

that
var f ) 2 (l-e) (2-e)2

var (fnl-

n n

is zero at e = 0 as (X,Y), being independent form an absolutely continuous pair

and at 1 as P(X=Y) = 1. The estimator

A 2
(T -+ CT -I) +4fT )/2T
n n n n n

is asymptotically normal with mean value 0 and variance 0(l-6)(2-6)/(1+e)n;
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evidently if 0* < 0 or 0* > 1 we must truncate.
A

To test independence (6 = 0), as fn = 0 and the variance of e is null, we

can use Tn, Ai(2-Tn-1) being asymptotically standard normal.

The correlation coefficient is

12 f log(2-t) dt

increasing from p(0) = 0 to p(l) = 1. As for the biextremal model the linear

regression is a very good approximation to the general one, in the same sense

as before (see Tiago de Oliveira (1974)).

Let us consider the natural model described in Tiago de Oliveira (1982). If

we take independent random (reduced) Gumbel variables Z and T and consider a new

random pair (X,Y) with X = max(Z-a,T-b), Y = max(Z-c,Y-d) with a, b, c, d > 0

-a -b -c -dsuch that the margins are standard we get e +e = e +e = 1. Then we have

,,(x,y) = P(X_<x,Y<_y) exp{-(e-X+e-Y)k(y-x))

-a -c-w - b -d-w
k(w) = (max(e-e max(e-, e- ))/(l+e- w)

if a - c !5 b - d, using all the introduced parameters. The random points as

a - c < y - x < b - d, are contained in a strip parallel to the first diagonal,

imposing thus a strong stochastic relation between X and Y if the bounds a - c

and b - d are not infinite. As a - c !5 0 !< b - d this strip contains the origin.

Let us now introduce the parameters ct, > 0, such that a - c = a + log(l-e - ) = -t

and b - d = -d - log(l-e -a) = . Note that a 0 or 0 imply e-a +e - 1.d

The final expression of the dependence function is

k M(w) _ if w -
l+e

-1e- +(le-)e - w  if - w 5
( 1-e-' - ) rl+e-W
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+ 1 e if w

Note that the left and right tails of k(w) coincide with the ones of the diagonal
a, 6

case. As said before the case a +- ~ corresponds to independence and

a = 3 = 0 to the diagonal case. The exchange of a and corresponds to the

exchange of x and y. For a = -loge and = -~ (0 !5 e 1) we get the biextremal

model and its dual (exchange of X and y) is obtained for x = 0,~ -loge.

It is immediately shown that

D (w) M Prob{Y-X! w} = 0 if w < -a.

1 - e if -a<_w <
-a_ -a -WJl-e .i(l-e )e

=1 if w

with jumps of e -l at-tad e - t

The correlation coefficient has the expression

p~a,13 6 f - +- logk, M(w dw

and as

1= 6 +0o ______ w dw
7T f- log1+e

we get by subtracting and simple algebra

6 lo l-e +(l-e- e w

Trr (1-e- )max(l,e )

6~ -+ (a+a) log
IT -

at

(e~ ~ ~ -).- lglt
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It is evident p( ,i<) 1 as ,xL - 0 and p(u,C3) - 0 as 1,6

The linear regression with reduced margins is iven by the straight lines

y - I = p(a, )(x-y) and x - y p(,,)(y-f)

For the general regression, as the interchange of X and Y is equivalent to the

interchange of , and b it is sufficient to compute the regression curve

I e- 1e- a x [e (ea-1l)/(eke- ] e - e -t1~x l ex le<
Y (X = x+ Cte - ) x 1[(l-e- (X)/(eke e_ )]e_- xT dt•

Analogously to the situation for the biextremal model we can expect that

regression lines are a good approximation - in the same sense - to the general

regression curve. When the margins are reduced, as -,x and are the bounds of

the support of D a(w) we can naturally estimate a and C from the w. - i - x..

As -c < min(w.) max(w.) _ S and -a < 0 5 the estimators of

, and 3 - although biased (both in a one-sided manner) are

o* = - min(O,min(wi)) (< C)

= max(O, min(wi)) (< 3)

ks Prob~a* = 01 (1 - D (0))n and Prob{(* = 0) D (0 )
n

and
2e _ 1~e- e

0 < D (0) = 2eB- < I if > 0

2(e 8 -~ fc4

we see that the probabilities converge to zero and, thus, the estimators are

coisistent. If 't = P = 0 we have the diagonal case and all the sample points are

in the first diagonal.

Remarks on the non-parametric estimation of the dependence function: The fact

that the set of dependence functions {k(w)} is a convex set could suggest estim~a-

ting the dependence function of the data under consideration by an average
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k*(w) = n 1 ks(W/wi)' where k (w/w.) is a special and convenient dependence

function and w. is the difference y, - x. for the observed pair (x.,yi), evidently11 1 11

with standard margins. By Khintchine's theorem we know that k*(w) converges

almost surely, for every w, to

k (w/t) dD(t)

which should be equal to wexp(fw D(t) dt)

k(w) - _ 00

S+ e

The resulting integral equation

(l+ew) f+O ks(w/t) dD(t) = exp(f'w. D(t) dt)

does not seem to be solvable for ks (w/v), for all admissible {D(w)}. This temp-

tation must be discarded.

We can try to estimate directly D(w) by the usual sample distribution function
1 ,-n

in [(w-w.) where H(w) is the Heavside jump function at w = 0 (H(w) = 0 if

w < 0, H(w) = 1 if w - 0). It is easy to see that we get, then,

k* (w) n--w i

1 + ew

where (w) 0 if w < 0 and (w)+ = w if w >_ 0. But we can see that although

k*(-c) = 1 we have k*(+-) = e-W 1. A possible modification is to take

ex(in 1W- )+)
k*(w) n1 + ew

which converges a.s. to
exp(JW_ D(t) dt)

w = k(w)
+ ew

as n 4 , because w 0. We have, already, then k**(--) = k**(+-) = I



20

but k is not yet a dependence function.

We could, owing to the central position of the logistic distribution, as

associated with independence, and also due to its quite good behavior, try to

estimate D(w) by
1n 1

D*(w) - yn 1

1+e 1 n

with , - 0. In fact, we do not obtain a D(w) function and, so, the simplern

estimator, up to now, is k**(w).

The area of non-parametric estimation of k(w) or D(w) by k- or D- functions

seems, thus, still completely unexplored.

Remarks about the general situation: In general we do not have standard margins

but margins with location and dispersion parameters. In that case, which seems

natural is to estimate, independently, the margin parameters X 6x (>0) and

A A A A
1,, (>0) by its ML-estimators X ,6 X and ' , then obtain the "estimated"
y )by itMLx xy y

A A A A A A
reduced values x. (x - X )/6 and yi = (yi - X )/6y and, finally, the "esti-

A A A
mated" reduced difference w. = Yi - x. and proceed as before, with standard mar-

gins.

As a whole, in the differentiable cases we can expect good behavior - see

the paper on -method by Tiago de Oliveira (1981) - but in the non-differentiable

cases the situation can be more difficult, as is, especially, the case for the

A A
Gumbel model where, with probability one we do not have x. = Yi . In this case the

A A
use of T is suggested, although it is much less efficient than the case of f .

n
This is, thus, another open area of study.
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